Hypercyclic homogeneous polynomials onH(C)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling of Homogeneous Polynomials

Conditions for reconstruction of multivariate homogeneous polynomials from sets of sample values are introduced, together with a frame-based method for explicitly obtaining the polynomial coefficients from the sample data.

متن کامل

Approximation by homogeneous polynomials

A new, elementary proof is given for the fact that on a centrally symmetric convex curve on the plane every continuous even function can be uniformly approximated by homogeneous polynomials. The theorem has been proven before by Benko and Kroó, and independently by Varjú using the theory of weighted potentials. In higher dimension the new method recaptures a theorem of Kroó and Szabados, which ...

متن کامل

Hypercyclic Behaviour of Operators in a Hypercyclic C0-Semigroup

Let {Tt}t≥0 be a hypercyclic strongly continuous semigroup of operators. Then each Tt (t > 0) is hypercyclic as a single operator, and it shares the set of hypercyclic vectors with the semigroup. This answers in the affirmative a natural question concerning hypercyclic C0-semigroups. The analogous result for frequent hypercyclicity is also obtained.

متن کامل

The Sidon Constant for Homogeneous Polynomials

The Sidon constant for the index set of nonzero m-homogeneous polynomials P in n complex variables is the supremum of the ratio between the l norm of the coefficients of P and the H(D) norm of P . We present an estimate which gives the right order of magnitude for this constant, modulo a factor depending exponentially on m. We use this result to show that the Bohr radius for the polydisc D is b...

متن کامل

Two Results on Homogeneous Hessian Nilpotent Polynomials

Let z = (z1, · · · , zn) and ∆ = ∑n i=1 ∂ 2 ∂z i the Laplace operator. A formal power series P (z) is said to be Hessian Nilpotent(HN) if its Hessian matrix HesP (z) = ( ∂ 2 P ∂zi∂zj ) is nilpotent. In recent developments in [BE1], [M] and [Z], the Jacobian conjecture has been reduced to the following so-called vanishing conjecture(VC) of HN polynomials: for any homogeneous HN polynomial P (z) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2018

ISSN: 0021-9045

DOI: 10.1016/j.jat.2017.09.005